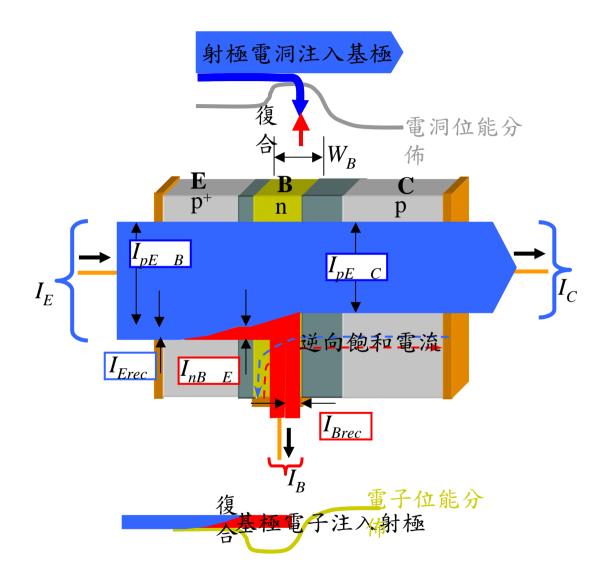

雙載體電晶體的結構與操作原理

- •射極特別被標出,箭號所指的極為n型半導體,和二極體的符號一致。
- •在沒接外加偏壓時,兩個pn接面都會形成空乏區,將中性的p型區和n型區隔開。


BJT被偏壓在順向活性區(forward active)

EB接面的空乏區由於在順 向偏壓會變窄,載體看到 的位障變小,射極的電洞 會注入到基極,基極的電 子也會注入到射極;

而BC接面的空乏區則會變 寬,載體看到的位障變大, 故本身是不導通的。

pnp電晶體在順向活性區時主要的電流種類

射極的電洞注入基極的n型中性區,馬上被多數載體電子包圍遮蔽,然後朝集極方向擴散,同時也被電子復合。

當沒有被復合的電洞到達BC接面的空乏區時,會被此區內的電場加速掃入集極,電洞在集極中為多數載體,很快藉由漂移電流到達連結外部的歐姆接點,形成集極電流 I_{C} 。

 I_c 的大小和BC間逆向偏壓的大小關係不大。基極外部僅需提供與注入電洞復合部分的電子流 I_{Brec} ,與由基極注入射極的電子流 $I_{nB\to E}$ (這部分是電晶體作用不需要的部分)。

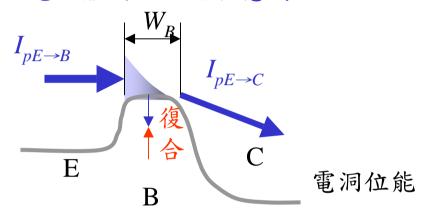
 $I_{nB
ightarrow E}$ 在射極與與電洞復合,即 $I_{nB
ightarrow E} = I_{Erec}$ 。

半導體物理與元件 5-3 中興物理 孫允武

電流關係

射極電流
$$I_E = I_{pE \to B} + I_{Erec} = I_{pE \to B} + I_{nB \to E} = I_{pE \to C} + I_{Brec} + I_{nB \to E}$$

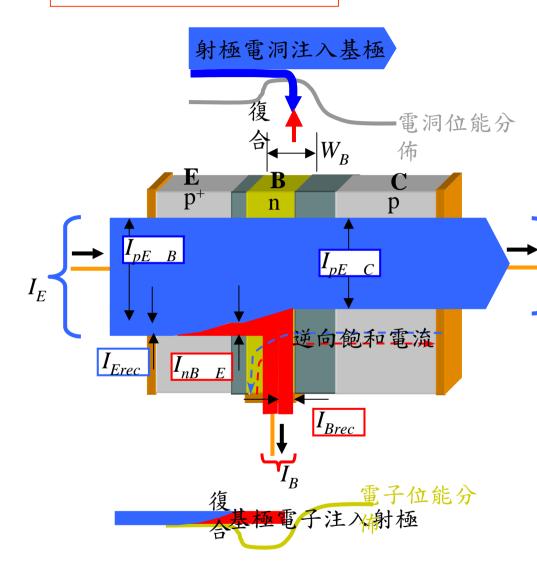
基極電流
$$I_B = I_{nB \rightarrow E} + I_{Brec} = I_{Erec} + I_{Brec}$$


集極電流
$$I_C = I_{pE \to C} = I_E - I_{Erec} - I_{Brec} = I_E - I_B$$

$$I_E = I_C + I_B$$

射極注入基極的電洞流大小是由EB接面間的順向偏壓大小來控制,和二極體的情形類似,在啟動電壓附近,微小的偏壓變化,即可造成很大的注入電流變化。更精確的說,BJT是利用 V_{EB} (或 V_{BE})的變化來控制 I_C ,而且提供之 I_B 遠比 I_C 小。

$$I_C \sim I_E \propto e^{qV_{EB}/kT}$$


電晶體設計時,射極的摻雜濃度較基極的高許多,如此由射極注入基極的射極主要載體電洞 $I_{pE\to B}$ 電流會比由基極注入射極的載體電子電流 $I_{nB\to E}$ 大很多,電晶體的效益比較高。

基極中性區的寬度 W_B 愈窄,電洞通過基極的時間愈短,被多數載體電子復合的機率愈低,到達集極的有效電洞流 $I_{pE\to C}$ 愈大,基極必須提供的復合電子流也降低,電晶體的效益也就愈高。

集極的摻雜通常最低,如此可增大CB極的崩潰電壓,並減小BC間逆向偏壓的pn接面的逆向飽和電流 I_{CBO} ,這裡我們忽略這個逆向飽和電流。

電晶體的效益相關參數

注入效率(injection efficiency)

$$\gamma = \frac{I_{pE \to B}}{I_E} = \frac{I_{pE \to B}}{I_{pE \to B} + I_{nB \to E}}$$

傳輸因子(transport factor)

$$\alpha_{T} = \frac{I_{pE \to C}}{I_{pE \to B}} = \frac{I_{pE \to C}}{I_{pE \to C} + I_{Brec}}$$

共基極極電流增益(common base current gain)

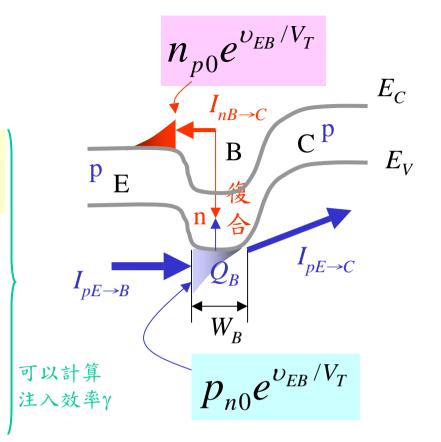
$$\alpha = \frac{I_C}{I_E} = \frac{I_{pE \to C}}{I_{pE \to B} + I_{nB \to E}} = \gamma \alpha_T$$

共射極電流增益(common emitter current gain)

$$\beta = \frac{I_C}{I_B} = \frac{I_C}{I_E - I_C} = \frac{\alpha}{1 - \alpha}$$

半導體物理與元件 5-6 中興物理 孫允武

電流增益與BJT參數的關係


pnp BJT

參考二極體方程式的推導過程

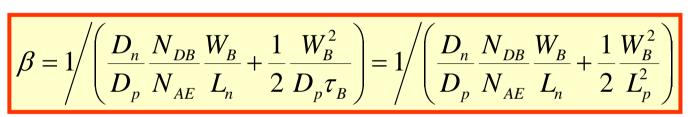
$$I_{nB\to E} = \frac{A_E q D_n n_{p0}}{L_n} e^{\nu_{EB}/V_T} = \frac{A_E q D_n n_i^2}{N_{AE} L_n} e^{\nu_{EB}/V_T}$$

$$I_{pE \to C} = A_E q D_p \left(\frac{dp}{dx}\right) \approx A_E q D_p \left(\frac{p_{n0}}{W_B}\right) e^{\nu_{EB}/V_T}$$

$$=rac{A_{E}qD_{p}n_{i}^{2}}{N_{DB}W_{B}}e^{
u_{EB}/V_{T}}=I_{S}e^{
u_{EB}/V_{T}}$$
 這裡忽略了一個小

基極復合電流

$$\begin{split} I_{Brec} &= \frac{Q_B}{\tau_B} \approx \frac{A_E q p_{n0} W_B}{2\tau_B} e^{\nu_{EB}/V_T} \\ &= \frac{A_E q n_i^2 W_B}{2\tau_B N_{DB}} e^{\nu_{EB}/V_T} \end{split}$$


 Q_{R} : 基極儲存少數載體

T_B:基極少數載體生命期

基極總電流

$$\begin{split} & i_{B} = I_{nB \to C} + I_{Brec} \\ & = \left(\frac{A_{E}qD_{n}n_{i}^{2}}{N_{AE}L_{n}} + \frac{A_{E}qn_{i}^{2}W_{B}}{2\tau_{B}N_{DB}}\right) e^{\upsilon_{EB}/V_{T}} = I_{S}\left(\frac{D_{n}}{D_{p}}\frac{N_{DB}}{N_{AE}}\frac{W_{B}}{L_{n}} + \frac{1}{2}\frac{W_{B}^{2}}{D_{p}\tau_{B}}\right) e^{\upsilon_{EB}/V_{T}} \end{split}$$

根據定義 $i_C = \beta i_R = I_S e^{\nu_{EB}/V_T}$

$$\alpha = \frac{i_C}{i_E} = \frac{i_C}{i_C + i_B} = \frac{\beta}{1 + \beta}$$

$$\alpha = \frac{1}{1+1/\beta} \approx 1 - \frac{1}{\beta} = 1 - \frac{D_n}{D_p} \frac{N_{DB}}{N_{AE}} \frac{W_B}{L_n} - \frac{1}{2} \frac{W_B^2}{L_p^2} = \gamma \alpha_T$$

$$\gamma = 1 - \frac{D_n}{D_p} \frac{N_{DB}}{N_{AE}} \frac{W_B}{L_n} \qquad \alpha_T = 1 - \frac{1}{2} \frac{W_B^2}{L_p^2}$$

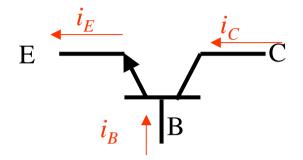
$$\gamma = 1 - \frac{1}{2} \frac{W_B^2}{L_p^2} \qquad \text{and } \gamma = 1 - \frac{1}{2} \frac{W_B^2}{L_p^2}$$

$$\gamma = 1 - \frac{1}{2} \frac{W_B^2}{L_p^2} = \gamma \alpha_T$$

$$\gamma = 1 - \frac{1}{2} \frac{W_B^2}{L_p^2} = \gamma \alpha_T$$

若要求 β (或 α) 愈 大愈好,則左式 分母應愈小愈好:

$$N_{AE}>>N_{DE}$$
 $W_{B}<< L_{n}$

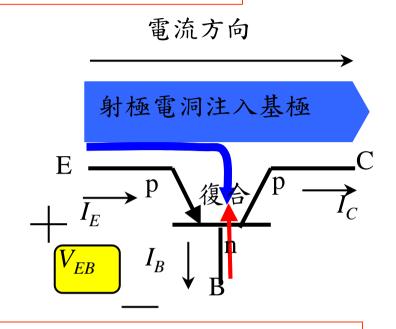

npn型較pnp型好

半導體物理與元件5-8 中興物理 孫允武

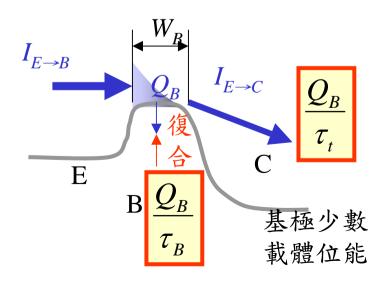
npn電晶體的相關公式

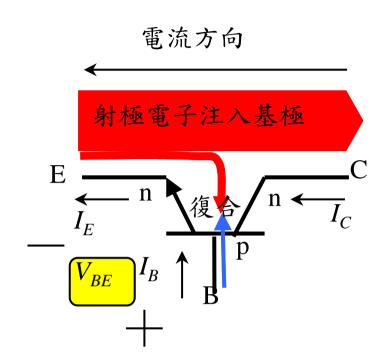
$$i_C = \beta i_B = I_S e^{\nu_{BE}/V_T}$$

$$I_S = \frac{A_E q D_n n_i^2}{N_{AB} W_B}$$



$$\beta = 1 / \left(\frac{D_p}{D_n} \frac{N_{AB}}{N_{DE}} \frac{W_B}{L_p} + \frac{1}{2} \frac{W_B^2}{D_n \tau_B} \right) = 1 / \left(\frac{D_p}{D_n} \frac{N_{AB}}{N_{DE}} \frac{W_B}{L_p} + \frac{1}{2} \frac{W_B^2}{L_n^2} \right)$$


$$\alpha \approx 1 - \frac{1}{\beta} = 1 - \frac{D_p}{D_n} \frac{N_{AB}}{N_{DE}} \frac{W_B}{L_p} - \frac{1}{2} \frac{W_B^2}{L_n^2} = \gamma \alpha_T$$


$$\gamma = 1 - \frac{D_p}{D_n} \frac{N_{AB}}{N_{DE}} \frac{W_B}{L_p} \qquad \alpha_T = 1 - \frac{1}{2} \frac{W_B^2}{L_n^2}$$

pnp與npn BJT的比較

Transit time & recombination time

T;基極少數載體通過基極的平均時間

$$\alpha_T = \frac{\frac{Q_B}{\tau_t}}{\frac{Q_B}{\tau_t} + \frac{Q_B}{\tau_B}} = \frac{1}{1 + \frac{\tau_t}{\tau_B}} \approx 1 - \frac{\tau_t}{\tau_B}$$

$$\tau_{t} = \frac{1}{2} \frac{W_{B}^{2}}{D_{B}}$$

半導體物理與元件 5-10 中興物理 孫允武

例題

有一批npn電晶體, α 分佈在0.990到0.995之間,請求出他們的 β 分佈範圍。

$$\beta = \frac{\alpha}{1 - \alpha}$$

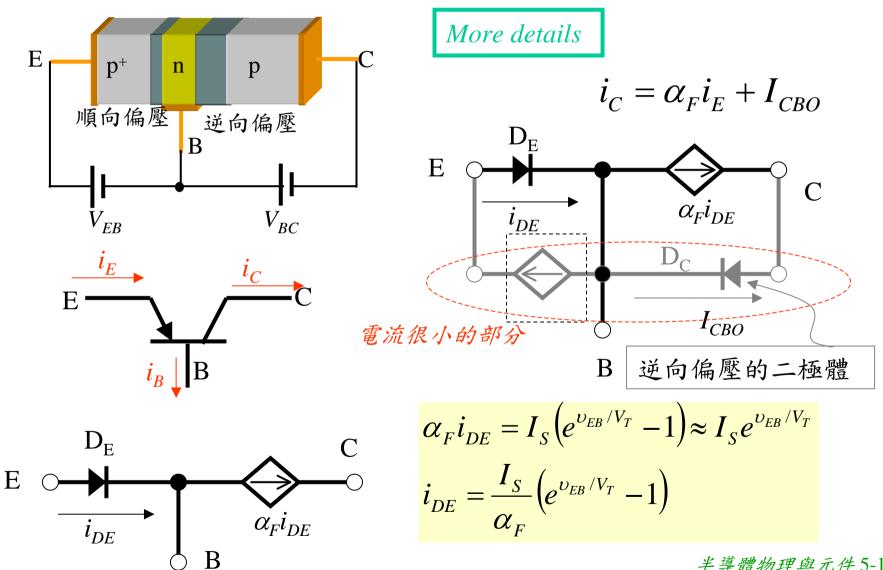
$$\alpha = 0.990$$

$$\beta = \frac{0.990}{1 - 0.990} = 99.0$$

$$\alpha = 0.995$$

$$\beta = \frac{0.995}{1 - 0.995} = 199$$

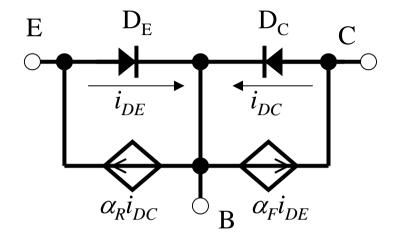
故 β 分佈在99.0和199之間。這裡可以看出 α 一點點的變化會造成b很大的變化。

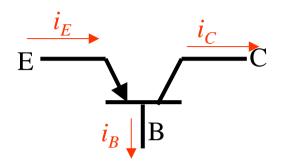

例題

一npn電晶體, $eta\!=\!100$,偏壓在順向活性區, $I_{C}\!=\!10~{
m mA}$ 。求出 I_{E} 與 I_{B} 。

$$I_B = \frac{I_C}{\beta} = \frac{10 \text{ mA}}{100} = 0.1 \text{ mA}$$

 $I_E = (\beta + 1)I_B = 101 \times 0.1 \text{ mA} = 10.1 \text{ mA}$


Ebers-Moll模型


pnp BJT被偏壓在順向活性區(forward active)的大訊號模型

半導體物理與元件5-12 中興物理 孫允武

Ebers-Moll (EM) Model for pnp BJTs

$$i_{DE} = I_{SE} \left(e^{v_{EB}/V_T} - 1 \right)$$

$$i_{DC} = I_{SC} \left(e^{v_{CB}/V_T} - 1 \right)$$

$$i_{DE} = I_{SE} \left(e^{\upsilon_{EB}/V_T} - 1 \right)$$
$$i_{DC} = I_{SC} \left(e^{\upsilon_{CB}/V_T} - 1 \right)$$

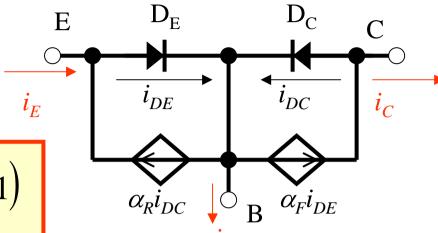
$$i_{DE} = \frac{I_S}{\alpha_F} \left(e^{v_{EB}/V_T} - 1 \right)$$

$$i_{DC} = \frac{I_S}{\alpha_R} \left(e^{v_{CB}/V_T} - 1 \right)$$

$$\alpha_F I_{SE} = \alpha_R I_{SC} = I_S$$
 α_F : forward alpha

 α_R : reverse alpha

$$i_{DE} = \frac{I_{S}}{\alpha_{F}} \left(e^{\nu_{EB}/V_{T}} - 1 \right)$$


$$i_{E} = i_{DE} - \alpha_{R} i_{DC}$$

$$i_{C} = -i_{DC} + \alpha_{F} i_{DE}$$

$$i_{B} = i_{E} - i_{C} = (1 - \alpha_{F}) i_{DE} + (1 - \alpha_{R}) i_{DC}$$

半導體物理與元件5-13 中興物理 孫允武

The pnp BJT terminal currents

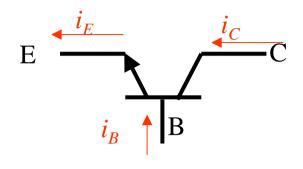
$$i_{E} = \frac{I_{S}}{\alpha_{F}} \left(e^{\upsilon_{EB}/V_{T}} - 1 \right) - I_{S} \left(e^{\upsilon_{CB}/V_{T}} - 1 \right)$$

$$i_{C} = I_{S} \left(e^{\upsilon_{EB}/V_{T}} - 1 \right) - \frac{I_{S}}{\alpha_{R}} \left(e^{\upsilon_{CB}/V_{T}} - 1 \right)$$

$$i_{B} = \frac{I_{S}}{\beta_{F}} \left(e^{\upsilon_{EB}/V_{T}} - 1 \right) + \frac{I_{S}}{\beta_{R}} \left(e^{\upsilon_{CB}/V_{T}} - 1 \right)$$

$$\beta_{F} = \frac{\alpha_{F}}{1 - \alpha_{F}}$$

$$\beta_{R} = \frac{\alpha_{R}}{1 - \alpha_{R}}$$


$$i_C = I_S \left(e^{\nu_{EB}/V_T} - 1 \right) - \frac{I_S}{\alpha_R} \left(e^{\nu_{CB}/V_T} - 1 \right)$$


$$i_{B} = \frac{I_{S}}{\beta_{F}} \left(e^{\nu_{EB}/V_{T}} - 1 \right) + \frac{I_{S}}{\beta_{R}} \left(e^{\nu_{CB}/V_{T}} - 1 \right)$$

$$\beta_F = \frac{\alpha_F}{1 - \alpha_F}$$

$$\beta_R = \frac{\alpha_R}{1 - \alpha_R}$$

Ebers-Moll (EM) Model for npn BJTs

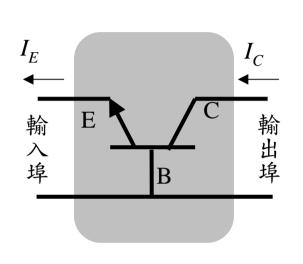
$$i_{E} = \frac{I_{S}}{\alpha_{F}} \left(e^{\upsilon_{BE}/V_{T}} - 1 \right) - I_{S} \left(e^{\upsilon_{BC}/V_{T}} - 1 \right)$$

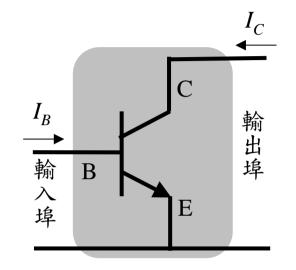
$$i_{C} = I_{S} \left(e^{\upsilon_{BE}/V_{T}} - 1 \right) - \frac{I_{S}}{\alpha_{R}} \left(e^{\upsilon_{BC}/V_{T}} - 1 \right)$$

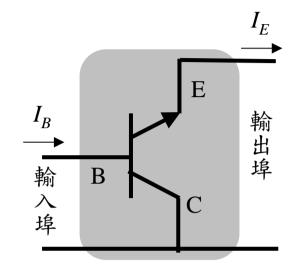
$$i_{B} = \frac{I_{S}}{\beta_{F}} \left(e^{\upsilon_{EB}/V_{T}} - 1 \right) + \frac{I_{S}}{\beta_{R}} \left(e^{\upsilon_{CB}/V_{T}} - 1 \right)$$

$$\beta_{F} = \frac{\alpha_{F}}{1 - \alpha_{F}} \qquad \beta_{R} = \frac{\alpha_{R}}{1 - \alpha_{R}}$$

半導體物理與元件 5-15 中興物理 孫允武


四種操作模式 (Four modes of operation)


	Forward Active (順向活性)	Reverse Active (逆向活性)	Cut Off (截止)	Saturation (飽和)
BE接面	ON	OFF	OFF	ON
BC接面	OFF	ON	OFF	ON
基極少數 載體分佈 及電位能	E B C	E B C	E B C	E B C
應用	VCCS or CCCS 放大或線性電路 開關或數位電路	少用	開關或數位電路	開關或數位電 路
重要特性	$i_{C} = \alpha i_{E}$ $i_{C} = \beta i_{B}$ $/V_{BE} / \sim 0.7 \text{V}$ $ V_{CE} \ge 0.2 \text{V}$		E,B&C are all open. (斷路)	$ V_{BE} \sim 0.7 \text{V}$ $ V_{CE} \leq 0.2 \text{V}$ $\frac{I_C}{I_B} = \beta_{\text{forced}} < \beta$


BJT的三種基本接法與特性

- •BJT有三隻接腳,每隻接腳可以給定一個電壓及一個通過的電流,總共有六個電訊號的參數,他們相互之間的關係即BJT的電流電壓特性。
- •電晶體是用作一個同時具有輸入埠(input port)與輸出埠(output port)的所謂雙埠元件(two-port device)。通常雙埠元件的輸入埠與輸出埠各有兩隻接腳,故電晶體必須有一隻接腳給輸入與輸出埠共用,電晶體在電路中的接法也以此來分類命名。
- •基極的電流太小,不適合當作輸出端,而集極並不和控制電流的EB接面相接,不適合當作輸入端。
- •三種共同端各自只對應一種輸出輸入端組合方式,最後只有三種常用接法,各稱為共基極(common-base)、共射極(common-emitter)、及共集極(common-collector)組態(configurations)。

npn電晶體三種常用接法

(a) 共基極(common-base)

輸入端:E

輸出端:C

(b) 共射極(common-emitter)(c) 共集極(common-collector)

輸入端:B

輸出端:C

輸入端:B

輸出端:E

在順向活性區之電流增益

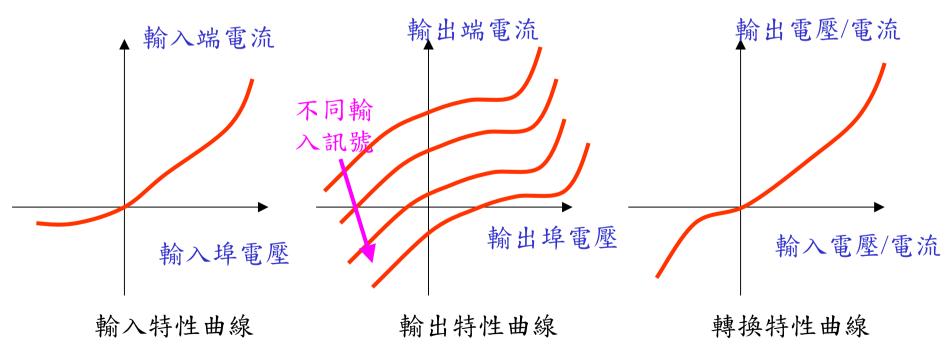
$$\frac{I_C}{I_E} = \alpha$$

Common-base current gain

$$\frac{I_C}{I_B} = \beta$$

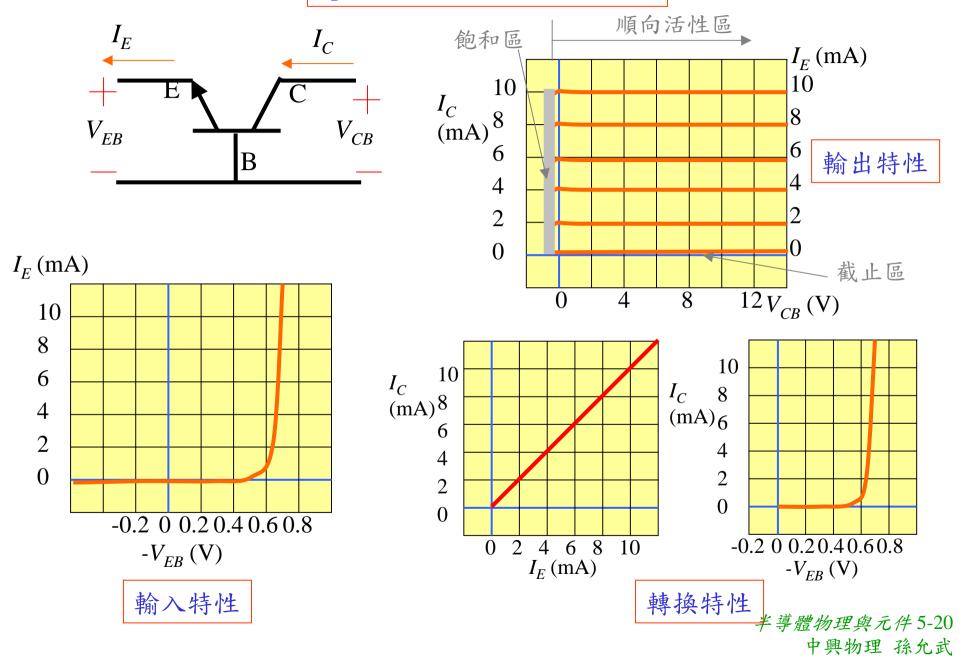
Common-emitter current gain

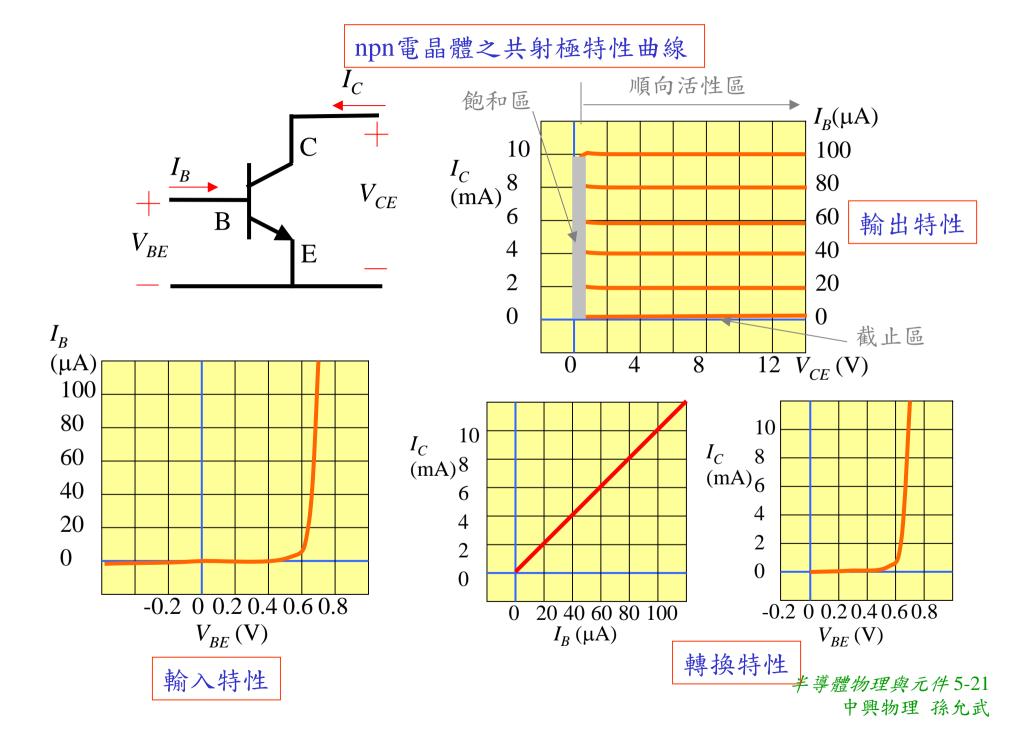
$$\frac{I_E}{I_B} = \frac{I_C + I_B}{I_B} = \beta + 1$$


半導體物理與元件 5-18 中興物理 孫允武

輸入與輸出特性曲線

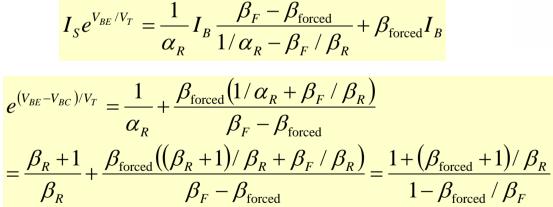
要瞭解雙埠元件在電路中對直流訊號的行為,我們必須要知道:


- (1) 輸入特性(input characteristics),
- (2)輸出特性(output characteristics),
- (3)轉換特性(transfer characteristics)。


前兩項是指輸入或輸出埠各自兩端點間的電流與電位差的關係,而第三項是指輸出端的電流或電壓對輸入端電流或電壓的函數關係。

半導體物理與元件 5-19 中興物理 孫允武

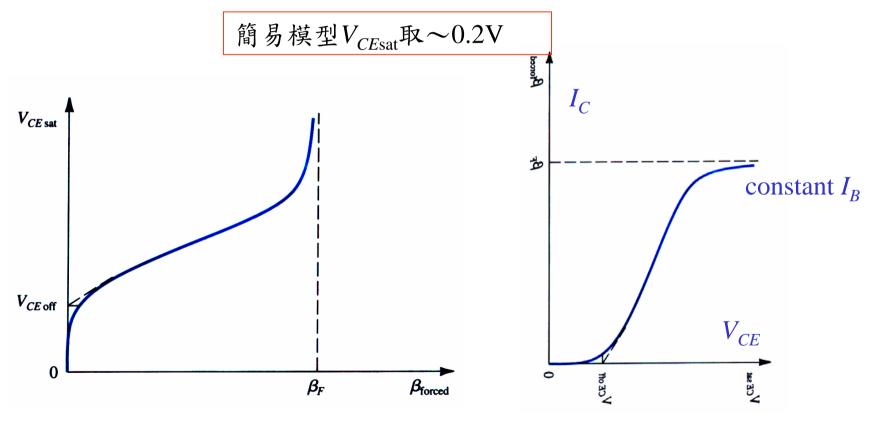
npn電晶體之共基極特性曲線


有關飽和模式的 $V_{CE_{\rm sat}}$

以npn電晶體為例

利用EM模型
$$e^{V_{BE}/V_T}, e^{V_{BC}/V_T} >> 1$$
 $i_C \approx I_S e^{V_{BE}/V_T} - \frac{I_S}{\alpha_R} e^{V_{BC}/V_T} = \beta_{\text{forced}} I_B$ $i_B = \frac{I_S}{\beta_F} e^{V_{BE}/V_T} + \frac{I_S}{\beta_R} e^{V_{BC}/V_T} = I_B$

上二式可解得
$$I_{S}e^{V_{BC}/V_{T}} = I_{B}\frac{\beta_{F} - \beta_{forced}}{1/\alpha_{R} - \beta_{F}/\beta_{R}}$$

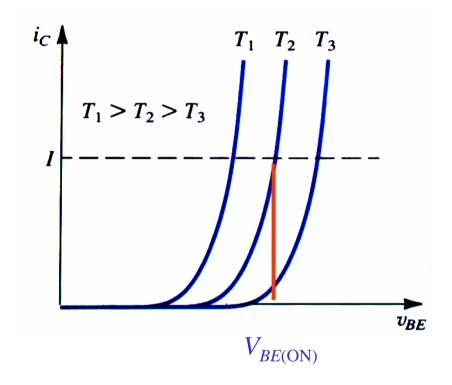

$$I_{S}e^{V_{BE}/V_{T}} = \frac{1}{\alpha_{R}}I_{B}\frac{\beta_{F} - \beta_{forced}}{1/\alpha_{R} - \beta_{F}/\beta_{R}} + \beta_{forced}I_{B}$$

$$V_{CEsat} = V_T \ln \frac{1 + (\beta_{forced} + 1)/\beta_R}{1 - \beta_{forced}/\beta_F}$$

假設 β_F =50, β_R =0.1, V_T =25mV,對不同的 β_{forced} 計算 V_{CEsat} 得下表

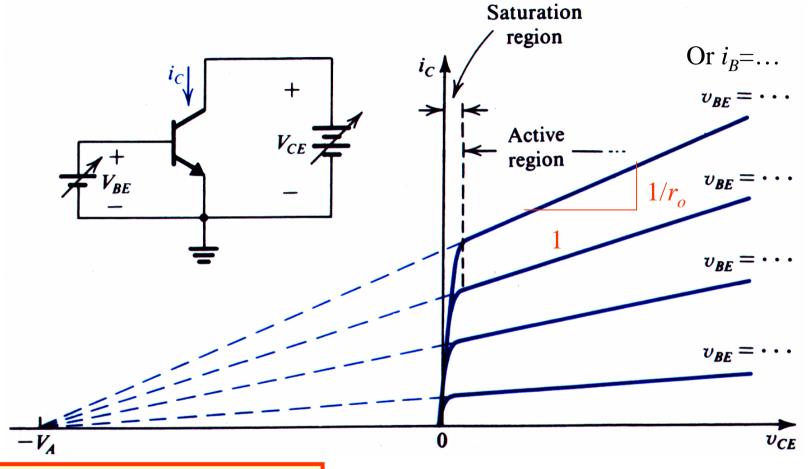
$eta_{ ext{forced}}$	50	48	45	40	30	20	10	1	0
$V_{CE\text{sat}}$ (mV)	∞	235	211	191	166	147	123	76	60

半導體物理與元件 5-23 中興物理 孫允武


非理想特性(Second Order Effect)

- 1. $V_{BE(ON)}$ 的溫度效應
- 2. Early Effect--- I_C 是 V_{CE} 的函數
- 3. $i_B \not\in V_{CB}$ 的函數
- 4. 漏電流與電晶體的崩潰(breakdown)
- 5. 有關電流增益β
- 6. 電容、串聯電阻與高頻模型
- 7. BJT的data sheet

$V_{BE(\mathrm{ON})}$ 的温度效應


$$i_C = I_S e^{\upsilon_{BE}/V_T}$$
溫度的函數

 $\Delta V_{BE(\mathrm{ON})} / \Delta T \sim -2 \mathrm{mV/^{o}C}$

Early Effect--- I_C 是 V_{CE} 的函數

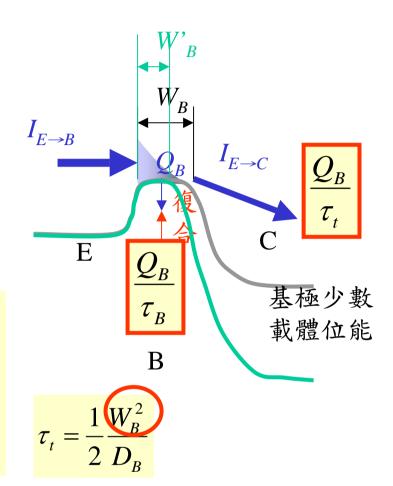
Base width modulation effect 基極寬度調變效應

$$i_C = I_S e^{\upsilon_{BE}/V_T} \left(1 + \frac{\upsilon_{CE}}{V_A} \right)$$

V_A: Early Voltage 約在50~100V

半導體物理與元件 5-26 中興物理 孫允武

Early Effect的物理機制

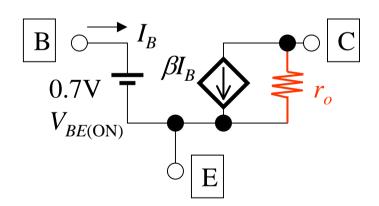

在forward active時

當 V_{CE} 增加, V_{BE} 幾乎不變,而BC接面的逆向偏壓變大,有效的基極寬度 (W'_B) 變小,載體通過基極的時間 (τ_t) 變短,由射極到達集極的載體比例變大, I_C 變大。

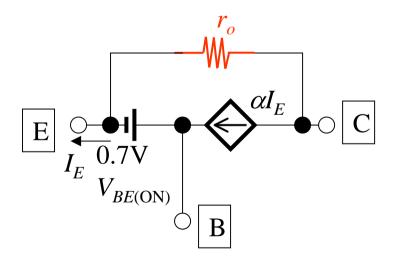
$$\alpha \approx 1 - \frac{1}{\beta} = 1 - \frac{D_p}{D_n} \frac{N_{AB}(W_B)}{N_{DE}} - \frac{1}{2} \frac{W_B^2}{L_n^2} = \gamma \alpha_T$$

$$\gamma = 1 - \frac{D_p}{D_n} \frac{N_{AB}(W_B)}{N_{DE}} \quad \alpha_T = 1 - \frac{1}{2} \frac{W_B^2}{L_n^2}$$

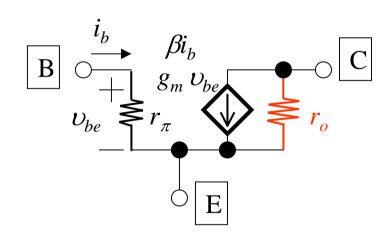
$$W = 1 - \frac{D_p}{D_n} \frac{N_{AB}}{N_{DE}} \frac{W_B}{L_p}$$
 $W_B \downarrow \Rightarrow \alpha, \beta \uparrow$

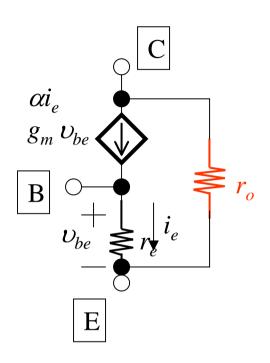

Early Effect對電晶體電路模型的影響

共射極電路的輸出阻抗r。

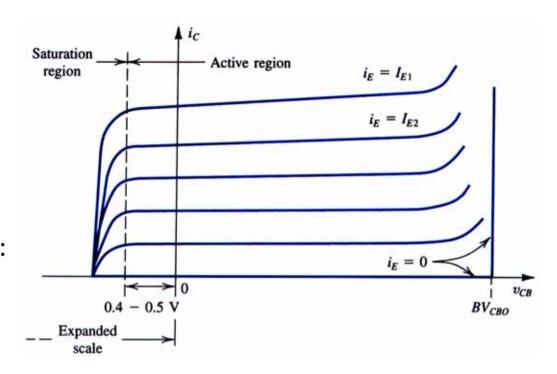

$$r_{o} \equiv \left[\frac{\partial i_{C}}{\partial \upsilon_{CE}}\right] \upsilon_{BE} = \text{constant} = \left[\frac{I_{S}e^{\upsilon_{BE}/V_{T}}}{V_{A}}\right]^{-1} = \left[\frac{I_{C}}{V_{A}}\frac{V_{A}}{V_{A} + \upsilon_{CE}}\right]^{-1}$$

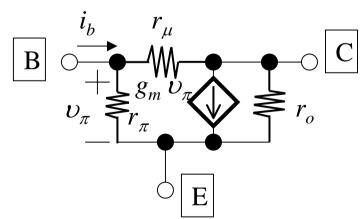
$$= \frac{V_{A} + \upsilon_{CE}}{I_{C}} \approx \frac{V_{A}}{I_{C}} \quad \text{if} \quad \upsilon_{CE} << V_{A}$$


大訊號等效電路


一般在大訊號分析並不考慮r。

小訊號等效電路


一般都把 υ_{be} 記做 υ_{π}



i_B 是 V_{CB} 的函數

固定 i_E 時, ν_{CB} 增加, i_C 會 跟著增加,也就是說 i_B 會 減少。我們用一個電阻 r_μ 做為此效應之模型。


Hybrid-π model變成如下圖:

rμ很少考慮

漏電流與電晶體的崩潰(breakdown)

pnp 電晶體的共基極與共射極輸出特性曲線

 I_{CBO} 與 I_{CEO}

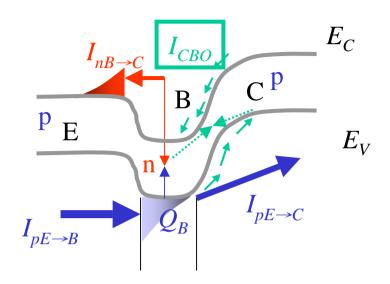
CXO中的O代表第三之接腳open

$$i_C = \beta i_B + I_{CEO}$$

 $i_C = \alpha i_E + I_{CBO}$

$$i_{C} = \beta i_{B} + I_{CEO}$$

$$i_{C} = \alpha i_{E} + I_{CBO}$$

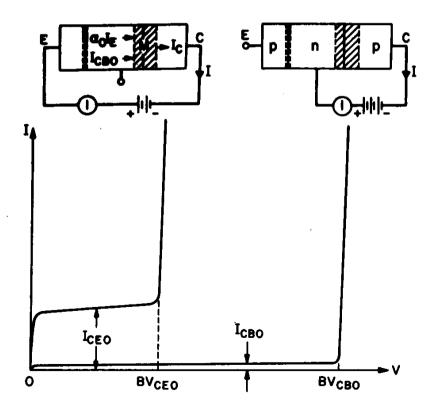

$$i_{C} = \alpha i_{E} + I_{CBO}$$

$$i_{C} = \frac{\alpha i_{B}}{1 - \alpha} + \frac{I_{CBO}}{1 - \alpha} = \beta i_{B} + (\beta + 1)I_{CBO}$$

$$I_{CEO} = (\beta + 1)I_{CBO}$$

為什麼 I_{CEO} 比 I_{CBO} 大?

當 i_B =0,BC接面的逆向電流 I_{CBO} 會引起EB接面的載體注入,而注入的大小恰為 I_{CBO} 的 β 倍,此時之EC間電流即 I_{CEO} =(β +1) I_{CBO} 。


BV_{CBO} 與 BV_{CEO}

CEO的接法叫CBO的接法 更易產生BC接面的壘增崩 潰,故 $|BV_{CBO}| > |BV_{CEO}|$ 。

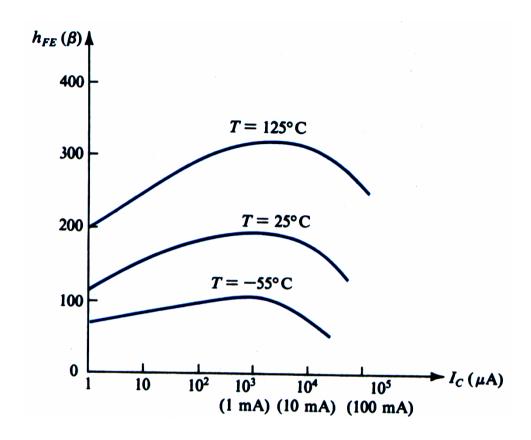
原因和BC接面的電流會引 起BE接面的注入電流,即 電流放大的效應有關。

MODEL:

$$BV_{CEO} = BV_{CBO} / \sqrt[\eta]{\beta}$$
$$\eta = 3 \sim 6$$

¹ 體物理與元件 5-32 中興物理 孫允武

有關電流增益β


A. 温度效應

溫度上升, β 會增大。

原因:當溫度上生時,在基極的少數載體生命期 τ_B 變長,即較不易被復合,故到達集極的機率增大, α_t 增大,也就是 β 增大。

MODEL:

$$\beta(T) = \beta(T_R) \left(\frac{T}{T_R} \right)^{XTB}$$

XTB: temp. exponent>1

B. 靜態偏壓點影響 β

Ic太小時,漏電流(尤其是在表面及空乏區的復合或產生電流)必須考 慮, α 減小, β 也減小。 I_{c} 較大時,較不受漏電流影響。

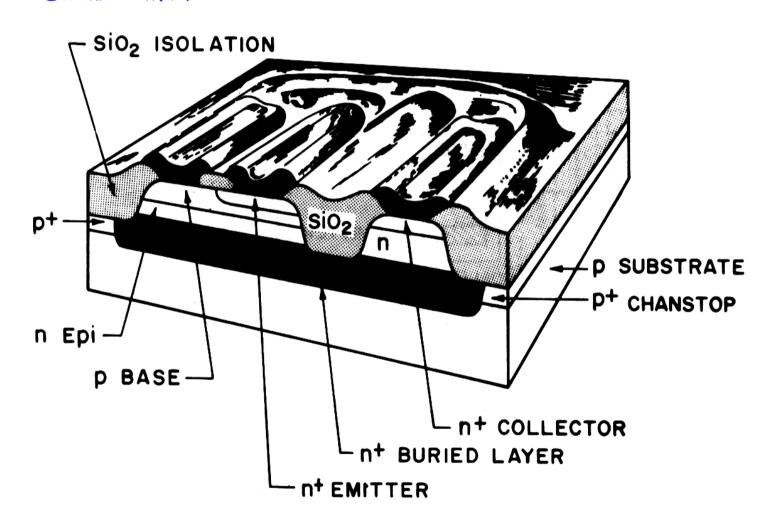
 $I_{\mathcal{C}}$ 太大時,會有串聯電阻效應及高注入效應(high-injection effect),使 得 β 減小。

β的定義 一般不太區分

$$h_{FE} \equiv \beta_{dc} \equiv \frac{I_{CQ}}{I_{BQ}} \qquad \text{dc } \beta$$

$$h_{fe} \equiv \beta_{ac} \equiv \frac{\Delta i_C}{\Delta i_B} |_{\mathcal{O}_{CE}} = \text{constant}$$
 dc β or incremental β

→ 輸出小訊號電壓為0→短路


 h_{fe} : forward short-circuit current gain

h parameters之一

半導體物理與元件5-34 中興物理 孫允武

電容、串聯電阻與高頻模型

實際的IC電晶體結構圖

半導體物理與元件 5-35 中興物理 孫允武

各接面的電容 以npn BJT為例

The Base-Charging or Diffusion Capacitance C_{de}

即 U_{BE} 改變時,在基極少數載體儲存量 Q_B 的變化,所產生的電容效應。

$$C_{de} = \frac{dQ_B}{dv_{BE}} = \tau_t \frac{di_C}{dv_{BE}} = g_m \tau_t \qquad Q_B = \tau_t i_C = \tau_F i_C$$

$$C_{de} = \tau_t \frac{I_C}{V_T} = \tau_F \frac{I_C}{V_T}$$
transit tine
$$C_{de} = \tau_t \frac{I_C}{V_T} = \tau_F \frac{I_C}{V_T}$$

forward base transit time

The Base-Emitter Junction Capacitance C_{ie}

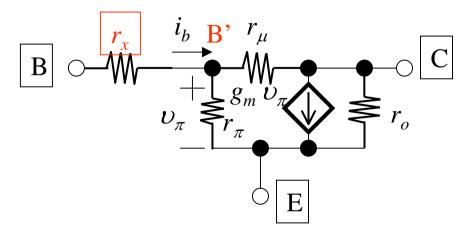
$$C_{je} = \frac{C_{je0}}{\left(1 - \frac{V_{BE}}{V_{0e}}\right)^m} \quad \text{or}$$

$$C_{je} \cong 2C_{je0}$$

m: grading coefficient of the EBJ junction~0.5

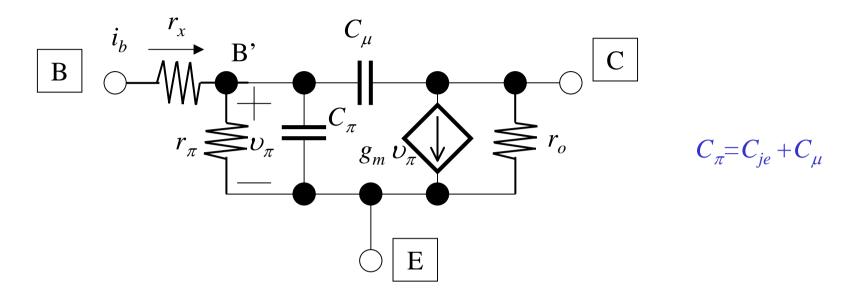
 V_{0e} : EBJ built-in potential~0.9V

The Collector-Base Junction Capacitance C_{μ}

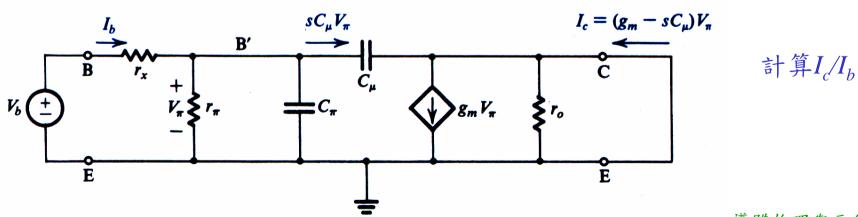

$$C_{\mu} = \frac{C_{\mu 0}}{\left(1 + \frac{V_{CB}}{V_{0c}}\right)^{m}}$$

m: grading coefficient of the CBJ junction 0.2~0.5

 V_{0c} : EBJ built-in potential~0.75V


The Base Ohmic Resistance r_x

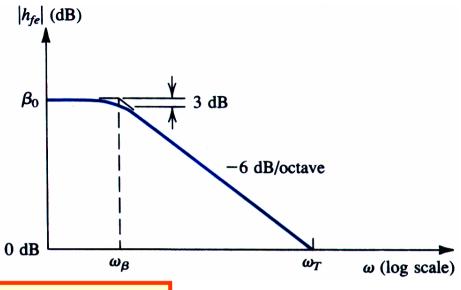
連結基極外界接點到Active的區域之間必須加上一連結於幾時Ω的電阻。在高頻電子電路十分重要。在低頻的電路設計中可以忽略。



半導體物理與元件 5-37 中興物理 孫允武

The High-Frequency Hybrid- π Model

計算 f_T : unity-gain frequency



十導體物理與元件 5-38 中興物理 孫允武

$$I_{c} = (g_{m} - sC_{\mu})V_{\pi}$$

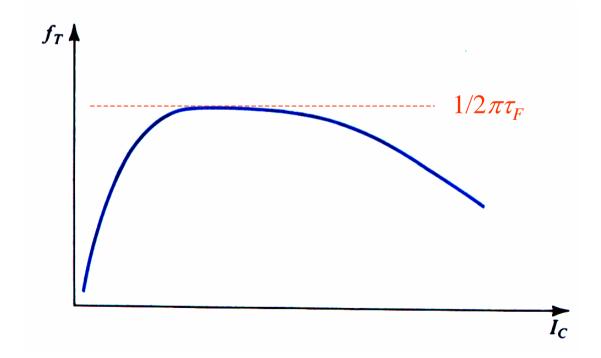
$$V_{\pi} = I_{b}(r_{\pi} // C_{\pi} // C_{\mu})$$

$$h_{fe} \equiv \frac{I_{c}}{I_{b}} = \frac{g_{m} - sC_{\mu}}{1/r_{\pi} + s(C_{\pi} + C_{\mu})}$$

$$ilde{ ilde{B}} ilde{ ilde{B}} ilde{ ilde{B}} ilde{ ilde{B}} ilde{ ilde{B}}$$
 。即頻率不是很高時

$$h_{fe} \approx \frac{g_m r_\pi}{1 + s(C_\pi + C_\mu) r_\pi} = \frac{\beta}{1 + s(C_\pi + C_\mu) r_\pi}$$

$$\omega_{\beta} = \frac{1}{(C_{\pi} + C_{\mu})r_{\pi}}$$


$$\omega_{T} = \beta_{0}\omega_{\beta}$$

$$\omega_{T} = \frac{g_{m}}{C_{\pi} + C_{\mu}} \qquad f_{T} = \frac{g_{m}}{2\pi(C_{\pi} + C_{\mu})}$$

半導體物理與元件 5-39 中興物理 孫允武

f_T 對 I_C 的關係

$$\begin{split} f_{T} &= \frac{g_{m}}{2\pi \left(C_{\pi} + C_{\mu}\right)} = \frac{g_{m}}{2\pi \left(C_{je} + C_{de} + C_{\mu}\right)} \\ &= \frac{I_{C}/V_{T}}{2\pi \left(C_{je} + \tau_{F} \frac{I_{C}}{V_{T}} + C_{\mu}\right)} \end{split}$$

半導體物理與元件 5-40 中興物理 孫允武

BJT的data sheet

以2N3904為例

Absolute Maximum Ratings*

TA = 25°C unless otherwise noted

Symbol	Parameter	Value	Units
V _{CEO}	Collector-Emitter Voltage	40	V
V _{CBO}	Collector-Base Voltage	60	V
V _{EBO}	Emitter-Base Voltage	6.0	V
I _C	Collector Current - Continuous	200	mA
T _J , T _{stg}	Operating and Storage Junction Temperature Range	-55 to +150	°C

Electrical Characteristics

TA = 25°C unless otherwise noted

Symbol Parameter	Test Conditions	Min	Max	Units
------------------	-----------------	-----	-----	-------

OFF CHARACTERISTICS

V _{(BR)CEO}	Collector-Emitter Breakdown Voltage	$I_C = 1.0 \text{ mA}, I_B = 0$	40		V
V _{(BR)CBO}	Collector-Base Breakdown Voltage	$I_C = 10 \mu A, I_E = 0$	60		V
V _{(BR)EBO}	Emitter-Base Breakdown Voltage	$I_E = 10 \mu\text{A}, I_C = 0$	6.0		V
I _{BL}	Base Cutoff Current	$V_{CE} = 30 \text{ V}, V_{EB} = 0$		50	nA
I _{CEX}	Collector Cutoff Current	$V_{CE} = 30 \text{ V}, V_{EB} = 0$		50	nA

Electrical Characteristics

Symbol	Parameter	Test Conditions	Min	Max	Units
ON CHAR	RACTERISTICS*				
h _{FE}	DC Current Gain	I_C = 0.1 mA, V_{CE} = 1.0 V I_C = 1.0 mA, V_{CE} = 1.0 V I_C = 10 mA, V_{CE} = 1.0 V I_C = 50 mA, V_{CE} = 1.0 V I_C = 100 mA, V_{CE} = 1.0 V	40 70 100 60 30	300	
V _{CE(sat)}	Collector-Emitter Saturation Voltage	$I_C = 10 \text{ mA}, I_B = 1.0 \text{ mA}$ $I_C = 50 \text{ mA}, I_B = 5.0 \text{ mA}$		0.2 0.3	V
$V_{\text{BE(sat)}}$	Base-Emitter Saturation Voltage	$I_C = 10 \text{ mA}, I_B = 1.0 \text{ mA}$ $I_C = 50 \text{ mA}, I_B = 5.0 \text{ mA}$	0.65	0.85 0.95	V
SMALL SI	GNAL CHARACTERISTICS				
f _T	Current Gain - Bandwidth Product	$I_C = 10 \text{ mA}, V_{CE} = 20 \text{ V},$	300		MHz

f _T	Current Gain - Bandwidth Product	$I_C = 10 \text{ mA}, V_{CE} = 20 \text{ V},$	300		MHz
		f = 100 MHz			
Cobo	Output Capacitance	$V_{CB} = 5.0 \text{ V}, I_{E} = 0,$		4.0	pF
		f = 1.0 MHz			
C _{ibo}	Input Capacitance	$V_{EB} = 0.5 \text{ V}, I_C = 0,$		8.0	pF
		f = 1.0 MHz			
NF	Noise Figure (except MMPQ3904)	$I_C = 100 \mu\text{A}, V_{CE} = 5.0 \text{V},$		5.0	dB
		$R_S = 1.0 k\Omega$, f=10 Hz to 15.7 kHz			

Symbol	Parameter	Test Conditions	Min	Max	Units		
SWITCHING CHARACTERISTICS (except MMPQ3904)							
t _d	Delay Time	V _{CC} = 3.0 V, V _{BE} = 0.5 V,		35	ns		
t _r	Rise Time	I _C = 10 mA, I _{B1} = 1.0 mA		35	ns		
ts	Storage Time	V _{CC} = 3.0 V, I _C = 10mA		200	ns		
t _f	Fall Time	$I_{B1} = I_{B2} = 1.0 \text{ mA}$		50	ns		

^{*}Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2.0%

Spice Model

NPN (Is=6.734f Xti=3 Eg=1.11 Vaf=74.03 Bf=416.4 Ne=1.259 Ise=6.734 Ikf=66.78m Xtb=1.5 Br=.7371 Nc=2

Isc=0 Ikr=0 Rc=1 Cjc=3.638p Mjc=.3085 Vjc=.75 Fc=.5 Cje=4.493p Mje=.2593 Vje=.75 Tr=239.5n Tf=301.2p

Itf=.4 Vtf=4 Xtf=2 Rb=10)